Technology Transfer of HIV Assays for Resource-Poor Settings

Susan A. Fiscus, Ph.D.
University of North Carolina
Chapel Hill, NC USA
Model for HIV Assays in Resource-Poor Settings

- Reference center
- Provincial or district level
- Primary care or rural setting
- Viral load
 - Expensive
 - Complex technology
 - Gold standard
- P24/Reverse transcriptase?
 - Lower cost
 - Less complex technology
- Ship samples (DBS or fixatives)
 - Least resource intensive
 - Least complex
HIV Viral Assay Working Group

- Members include representatives from:
 - Academia
 - CDC
 - NIH
 - International laboratories
 - Industry
Steps to Validation and Technology Transfer

- Performance characteristics
 - Sensitivity
 - Specificity
 - Precision
 - Reproducibility
 - Linearity

- Clinical validation
 - Diagnosis
 - Clinical monitoring
 - Progression of disease
Steps to Validation and Technology Transfer

- Technology transfer
- Proficiency testing
- Dissemination/Acceptance
Potential Viral Assays for Monitoring and Diagnosis

- Heat-denatured p24 antigen assay
- Reverse transcriptase assay
- Real time PCR
- Other assays, including other p24 assays and simple resistance assays such as OLA
HDp24 antigen- PerkinElmer Life Sciences

- Standard p24 antigen assay with modifications
 - Heat denaturation of Ab:Ag complexes
 - Signal amplification
 - Kinetic reading
- “Lab in a box”
 - Kit, ELISA reader, computer loaded with the kinetic software
Published data for HD-p24 assay

- Burgisser, et al 2000
- Nadal, et al 1999
- Ledergerber, et al 2000
- Pascual, et al 2002
- Schupbach, et al 1996
- Schupbach, et al 2001
Performance characteristics, Subtype B

- Sensitivity – very comparable to RNA, especially in untreated patients
- Specificity – 99-100%
- Reproducibility - Excellent
- Precision - Excellent
- Linearity – 500 to 6,250,000 fg/ml
Clinical Validation - Subtype B

- Infant diagnosis – Excellent (97% sensitive, 99-100% specificity)
- Clinical monitoring
 - In general p24 antigen decreases in parallel with HIV RNA in successfully treated patients
 - Correlation with HIV RNA is best at higher viral loads (>5000 -10,000 cp/ml)
 - p24 can be detected in some patients who have undetectable viral loads
Clinical Validation-Subtype B

- Correlation with Disease Progression

In 2 different studies, HDp24 was very predictive of CD4 decline and survival (Ledergerber, 2000) or progression to AIDS (Sterling, in press)
Sensitivity – Non-B subtypes compared with Roche RNA, v1.5

- Subtype A - 22+/29 (76%)
- Subtype C – 53+/61 (87%)
- Subtype D – 2+/10 (20%)
- Subtype F - 0+/1 (0%)
- Recombinant AG - 109+/117 (93%)
- Recombinant AE - 3+/6 (50%)
Clinical validation – Non-B subtypes

- Infant Diagnosis –

- Clinical monitoring – Cote d’Ivoire
 - Tehe & Schupbach – a modification of the basic kit gave excellent results
 - Tehe & Fiscus, testing the same specimens, had only good results
Summary

The HD-p24 assay worked very well with subtype B, A and D for diagnosis of infants.
Clinical monitoring has had variable results, although the data are still promising.
Additional work is needed for the non-B subtypes.
Each site should do independent evaluations to determine if the assay will work under specific lab and population conditions.
Technology Transfer Considerations

- Infrastructure - electricity, refrigeration, water
- Cost of the technologies - instruments and maintenance, as well as kits
- Human resources - scarcity of technicians, level of training needed
Acknowledgements

- Jorg Schupbach, Zurich
- Oliviero Varnier, Genoa
- Wendy Stevens, Johannesburg
- Robert Downing, Entebbe
- Gunnel Biberfeld, Dar es Salaam
- Chantal Maurice and Andre Tehe, Abidjan
- CDC, Atlanta – Rich Respess, Dave Withum, Bernie Branson, Mark Rayfield, Tim Dondero, Dan Newman, Jon Kaplan
- Isabel Cabruja - PerkinElmer Life Sciences
- Forum for Collaborative HIV Research – Veronica Miller, Ben Chang
- GMHC – Gregg Gonsalves