HBsAg Loss Meta-Analysis

Hannah Choi

Toronto Centre for Liver Disease
Association between HBsAg loss and risk of hepatocellular carcinoma in chronic hepatitis B: a systematic review and meta-analysis

Hannah S.J. Choi
PhD Candidate
Toronto Centre for Liver Disease, University Health Network
Background

- Loss of hepatitis B surface antigen (HBsAg): desired treatment endpoint for chronic hepatitis B (CHB)
- Studies have shown an association between HBsAg loss and improved long-term clinical outcomes in CHB patients
- Its utility as a surrogate endpoint needs to be well-described for development of novel therapies and regulatory decision making
Objectives

- To describe the association between HBsAg loss and HCC development
- To evaluate HBsAg loss as a surrogate endpoint for improved long-term clinical outcome in CHB
Methods

- Systematic literature review conducted in PubMed, EMBASE, and Cochrane Library databases for articles published between Jan 1990-Nov 2018

- Inclusion criteria:
 - >50 CHB patients
 - ≥2 years of follow-up
 - Measured for serum HBsAg status at baseline and during follow-up
 - Reported data on HCC
Methods

- Exclusion criteria:
 - Duplicate study population
 - HBV reactivation
 - Liver transplant recipients
 - No clinical endpoint studied
 - No HBsAg loss/HBsAg-persistent cohort for comparison
 - HCC prior to HBsAg loss
 - HCV/HDV/HIV coinfected population
 - Case-control studies
Methods

- Incidence rates of HCC from HBsAg loss and HBsAg-persistent groups used to calculate rate ratios (RR)
 - HCC incidence rate = number of HCC in cohort/total person-years of follow-up in cohort
 - Reciprocal continuity correction factors used for studies reporting zero events in the HBsAg loss cohort

- Meta-analysis of RRs using a random effects model performed

- Subgroup and sensitivity analyses conducted to test robustness of results

1Sweeting, Statistics in Medicine (2014)
Study selection flow chart

Records identified by search strategy (n = 3410)

Additional records identified through other sources (n = 94)

Records after duplicates removed (n = 2916)

Records excluded by screening titles/abstracts (n = 2822)

Studies excluded:
1. Duplicate study population (n = 8)
2. Case-control studies (n = 3)
3. <2 years average follow-up (n = 3)
4. HBV reactivation (n = 6)
5. Liver transplant recipients (n = 5)
6. Co-infected population (n = 1)
7. No clinical endpoints studied (n = 9)
8. No HBsAg persistent cohort (n = 9)
9. No HBsAg seroclearance (n = 14)
10. HBsAg status not reported (n = 8)*

Full-text articles assessed for eligibility (n = 94)

Studies included in quantitative synthesis (n = 28)

Studies included reporting HCC incidence (n = 26)

Studies included reporting incidence of liver decompensation (n = 7)

Studies included reporting incidence of LT and/or all-cause mortality (n = 13)

*Investigators reached out to the corresponding authors of these articles and either did not receive a response or the response did not include the needed clarifications.
HCC Meta-analysis

<table>
<thead>
<tr>
<th>Study</th>
<th>n[\text{no.}]</th>
<th>p-\text{Y[\text{no.}]}</th>
<th>n[\text{met}]</th>
<th>RR and 95% CI</th>
<th>RR</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>p-value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun et al., 2014</td>
<td>4</td>
<td>8.0</td>
<td>595</td>
<td>1190.0</td>
<td>0.01</td>
<td><0.01</td>
<td>1.6E+08</td>
<td>0.681</td>
<td>0.03%</td>
</tr>
<tr>
<td>Takkenberg et al., 2013</td>
<td>13</td>
<td>26.0</td>
<td>79</td>
<td>158.0</td>
<td>0.14</td>
<td><0.01</td>
<td>18.74</td>
<td>0.433</td>
<td>0.62%</td>
</tr>
<tr>
<td>Yang et al., 2013</td>
<td>6</td>
<td>33.8</td>
<td>115</td>
<td>646.9</td>
<td>0.05</td>
<td><0.01</td>
<td>242.78</td>
<td>0.480</td>
<td>0.20%</td>
</tr>
<tr>
<td>Kim et al., 2008</td>
<td>11</td>
<td>44.0</td>
<td>204</td>
<td>816.0</td>
<td>0.02</td>
<td><0.01</td>
<td>104.49</td>
<td>0.378</td>
<td>0.21%</td>
</tr>
<tr>
<td>Marcellin et al., 2009</td>
<td>18</td>
<td>54.0</td>
<td>295</td>
<td>885.0</td>
<td>0.05</td>
<td><0.01</td>
<td>153.85</td>
<td>0.473</td>
<td>0.24%</td>
</tr>
<tr>
<td>Idilman et al., 2012</td>
<td>10</td>
<td>61.8</td>
<td>173</td>
<td>1069.7</td>
<td>0.05</td>
<td><0.01</td>
<td>172.97</td>
<td>0.470</td>
<td>0.22%</td>
</tr>
<tr>
<td>Chan et al., 2011</td>
<td>12</td>
<td>94.0</td>
<td>91</td>
<td>659.8</td>
<td>0.07</td>
<td><0.01</td>
<td>13.18</td>
<td>0.321</td>
<td>0.54%</td>
</tr>
<tr>
<td>Orito et al., 2015</td>
<td>13</td>
<td>97.5</td>
<td>589</td>
<td>4417.5</td>
<td>0.01</td>
<td><0.01</td>
<td>6.5E+03</td>
<td>0.512</td>
<td>0.09%</td>
</tr>
<tr>
<td>da Silva et al., 1996</td>
<td>20</td>
<td>114.0</td>
<td>164</td>
<td>836.4</td>
<td>0.05</td>
<td><0.01</td>
<td>10.12</td>
<td>0.268</td>
<td>0.52%</td>
</tr>
<tr>
<td>Tseng et al., 2011</td>
<td>18</td>
<td>153.0</td>
<td>372</td>
<td>3162.0</td>
<td>0.03</td>
<td><0.01</td>
<td>260.31</td>
<td>0.461</td>
<td>0.19%</td>
</tr>
<tr>
<td>Fattovich et al., 1998</td>
<td>32</td>
<td>181.3</td>
<td>277</td>
<td>1569.7</td>
<td>0.29</td>
<td>0.04</td>
<td>2.12</td>
<td>0.221</td>
<td>3.46%</td>
</tr>
<tr>
<td>Aral et al., 2012</td>
<td>25</td>
<td>212.9</td>
<td>398</td>
<td>2352.4</td>
<td>0.55</td>
<td>0.07</td>
<td>4.12</td>
<td>0.563</td>
<td>3.41%</td>
</tr>
<tr>
<td>Buti et al., 2015</td>
<td>62</td>
<td>310.0</td>
<td>634</td>
<td>3170.0</td>
<td>0.04</td>
<td><0.01</td>
<td>24.05</td>
<td>0.333</td>
<td>0.38%</td>
</tr>
<tr>
<td>Brouwer et al., 2016</td>
<td>43</td>
<td>335.4</td>
<td>249</td>
<td>1942.2</td>
<td>0.13</td>
<td><0.01</td>
<td>15.11</td>
<td>0.399</td>
<td>0.65%</td>
</tr>
<tr>
<td>Moucari et al., 2009</td>
<td>28</td>
<td>392.0</td>
<td>69</td>
<td>897.0</td>
<td>0.12</td>
<td><0.01</td>
<td>2.53</td>
<td>0.173</td>
<td>1.56%</td>
</tr>
<tr>
<td>Zonneveld et al., 2004</td>
<td>38</td>
<td>429.4</td>
<td>115</td>
<td>977.5</td>
<td>0.33</td>
<td>0.04</td>
<td>2.64</td>
<td>0.293</td>
<td>3.15%</td>
</tr>
<tr>
<td>Yang et al., 2016</td>
<td>37</td>
<td>456.8</td>
<td>181</td>
<td>1810.0</td>
<td>0.15</td>
<td>0.02</td>
<td>1.12</td>
<td>0.065</td>
<td>3.44%</td>
</tr>
<tr>
<td>Cho et al., 2014</td>
<td>165</td>
<td>566.5</td>
<td>1981</td>
<td>6801.8</td>
<td>1.12</td>
<td>0.59</td>
<td>2.15</td>
<td>0.728</td>
<td>18.99%</td>
</tr>
<tr>
<td>Fung et al., 2014</td>
<td>45</td>
<td>645.0</td>
<td>730</td>
<td>13930.8</td>
<td>0.01</td>
<td><0.01</td>
<td>128.34</td>
<td>0.360</td>
<td>0.18%</td>
</tr>
<tr>
<td>Laurent et al., 2015</td>
<td>78</td>
<td>772.2</td>
<td>534</td>
<td>5286.6</td>
<td>0.53</td>
<td>0.07</td>
<td>4.03</td>
<td>0.537</td>
<td>3.33%</td>
</tr>
<tr>
<td>Kim et al., 2014</td>
<td>110</td>
<td>1078.0</td>
<td>5299</td>
<td>31794.0</td>
<td>0.04</td>
<td>0.01</td>
<td>0.29</td>
<td>0.001</td>
<td>3.56%</td>
</tr>
<tr>
<td>Yip et al., 2018</td>
<td>376</td>
<td>2218.4</td>
<td>19887</td>
<td>93568.3</td>
<td>0.12</td>
<td>0.03</td>
<td>0.47</td>
<td>0.002</td>
<td>6.54%</td>
</tr>
<tr>
<td>Lim et al., 2016</td>
<td>145</td>
<td>3591.6</td>
<td>293</td>
<td>7257.4</td>
<td>0.06</td>
<td><0.01</td>
<td>0.99</td>
<td>0.049</td>
<td>1.80%</td>
</tr>
<tr>
<td>Tseng et al., 2015</td>
<td>338</td>
<td>4155.1</td>
<td>1783</td>
<td>21918.5</td>
<td>0.22</td>
<td>0.09</td>
<td>0.55</td>
<td>0.001</td>
<td>12.82%</td>
</tr>
<tr>
<td>Liu et al., 2014</td>
<td>529</td>
<td>8759.5</td>
<td>2417</td>
<td>38939.6</td>
<td>0.25</td>
<td>0.12</td>
<td>0.50</td>
<td>0.000</td>
<td>17.11%</td>
</tr>
<tr>
<td>Fung et al., 2009</td>
<td>25089</td>
<td>248242.0</td>
<td>116009</td>
<td>645752.0</td>
<td>0.26</td>
<td>0.17</td>
<td>0.74</td>
<td>0.005</td>
<td>16.77%</td>
</tr>
</tbody>
</table>

OVERALL

| Overall | 33264 | 273032.3 | 154519 | 1211810.9 | 0.30 | 0.20 | 0.43 | <0.001 | 100.00% |
Subgroup analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Subgroup</th>
<th>K</th>
<th>N</th>
<th>P-Y</th>
<th>RR</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retrospective</td>
<td>18</td>
<td>182465</td>
<td>1416301.5</td>
<td></td>
<td>0.27</td>
<td>0.16</td>
<td>0.48</td>
<td><0.001</td>
</tr>
<tr>
<td>Prospective</td>
<td>8</td>
<td>5318</td>
<td>68541.7</td>
<td></td>
<td>0.23</td>
<td>0.12</td>
<td>0.44</td>
<td><0.001</td>
</tr>
<tr>
<td>Cohort type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>12</td>
<td>155534</td>
<td>1312287.0</td>
<td></td>
<td>0.26</td>
<td>0.17</td>
<td>0.39</td>
<td><0.001</td>
</tr>
<tr>
<td>Treated</td>
<td>11</td>
<td>30553</td>
<td>150170.5</td>
<td></td>
<td>0.19</td>
<td>0.06</td>
<td>0.63</td>
<td>0.006</td>
</tr>
<tr>
<td>Both</td>
<td>3</td>
<td>1696</td>
<td>22385.6</td>
<td></td>
<td>0.36</td>
<td>0.09</td>
<td>1.46</td>
<td>0.152</td>
</tr>
<tr>
<td>Genotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/D</td>
<td>10</td>
<td>3056</td>
<td>29378.3</td>
<td></td>
<td>0.22</td>
<td>0.08</td>
<td>0.56</td>
<td>0.002</td>
</tr>
<tr>
<td>B/C</td>
<td>16</td>
<td>184727</td>
<td>1455464.9</td>
<td></td>
<td>0.27</td>
<td>0.15</td>
<td>0.48</td>
<td><0.001</td>
</tr>
<tr>
<td>Co-infected subpopulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>148485</td>
<td>1217211.2</td>
<td></td>
<td>0.31</td>
<td>0.16</td>
<td>0.62</td>
<td>0.001</td>
</tr>
<tr>
<td>No</td>
<td>23</td>
<td>39298</td>
<td>267631.9</td>
<td></td>
<td>0.27</td>
<td>0.16</td>
<td>0.44</td>
<td><0.001</td>
</tr>
<tr>
<td>HBeAg Status at Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)</td>
<td>5</td>
<td>1184</td>
<td>9258.7</td>
<td></td>
<td>0.31</td>
<td>0.09</td>
<td>1.11</td>
<td>0.073</td>
</tr>
<tr>
<td>(-)</td>
<td>6</td>
<td>3787</td>
<td>45751.3</td>
<td></td>
<td>0.20</td>
<td>0.09</td>
<td>0.47</td>
<td><0.001</td>
</tr>
<tr>
<td>Mix</td>
<td>15</td>
<td>182812</td>
<td>1429833.2</td>
<td></td>
<td>0.26</td>
<td>0.14</td>
<td>0.48</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Sub-analysis of treatment studies

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Number of studies</th>
<th>Number of patients</th>
<th>Total person-years of follow-up</th>
<th>Rate ratio</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN</td>
<td>2</td>
<td>250</td>
<td>2695.9</td>
<td>0.24</td>
<td>0.04</td>
<td>1.33</td>
<td>0.101</td>
</tr>
<tr>
<td>NrtI</td>
<td>7</td>
<td>29898</td>
<td>146351.6</td>
<td>0.17</td>
<td>0.03</td>
<td>0.96</td>
<td>0.045</td>
</tr>
<tr>
<td>NrtI+IFN</td>
<td>2</td>
<td>405</td>
<td>1123.0</td>
<td>0.11</td>
<td><0.01</td>
<td>6.99</td>
<td>0.296</td>
</tr>
<tr>
<td>Overall</td>
<td>11</td>
<td>30553</td>
<td>150171</td>
<td>0.19</td>
<td>0.06</td>
<td>0.62</td>
<td>0.006</td>
</tr>
</tbody>
</table>
Meta-regression sensitivity analysis

A. $p=0.74$

B. $p=0.94$

C. $p=0.67$

D. $p=0.51$

E. $p=0.98$

F. $p=0.91$

G. $p=0.95$

H. $p=0.01$

I. $p=0.52$
Sensitivity analysis: Average follow-up

- Average follow-up duration was the only factor that had a significant influence on the rate ratio.
- Magnitude of HCC risk reduction associated with HBsAg loss increased with increasing follow-up duration.
- Excluding studies with <5 or >10 years of follow-up mitigated this effect; however, the trend persisted.
Conclusion

- HBsAg loss was strongly associated with a significantly reduced risk of HCC
- Both spontaneous and treatment-induced HBsAg loss were associated with reduced risk of HCC, regardless of treatment type
- Although the degree of risk reduction may differ, the positive effect associated with HBsAg loss persisted through all patient subpopulations
- Achieving HBsAg loss is a reliable measure of tangible clinical benefit
- Our results provide validation for the use of HBsAg loss as a surrogate endpoint for HCC risk reduction and improved clinical outcome in CHB patients
Acknowledgement

- **Study Co-authors**
 - Ryan Taylor Anderson, MS, MPH, The Forum for Collaborative Research
 - Oliver Lenz, PhD, Janssen
 - Marion Peters, MD, UCSF
 - Harry Janssen, MD, PhD, Toronto Centre for Liver Disease, University Health Network
 - Poonam Mishra, MD, MPH, US Food and Drug Administration
 - Eric Donaldson, PhD, US Food and Drug Administration
 - Stephanie Buchholz, Federal Institute for Drugs and Medical Devices
 - Gabriel Westman, Medical Products Agency
 - Veronica Miller, PhD, The Forum for Collaborative Research
 - Bettina Hansen, IHPME, University of Toronto
 - Gavin Cloherty, PhD, Abbott
 - Eric Donaldson, PhD, US FDA
 - Geoffrey Dusheiko, MD, University College London
 - Robert Gish, MD, Robert Gish Consultants
 - Michael Hombach, MD, Roche
 - Maureen Kamischke, BA, Hepatitis B Foundation
 - Pietro Lampertico, MD, PhD, University of Milan
 - Uri Lopatin, MD, Assembly
 - Eduardo Martins, MD, Dphil, Bruno Martins Consulting LLC
 - Brian McMahon, MD, Alba Native Medical Center
 - Poonam Mishra, MD, US FDA
 - Charu Mullick, MD, US FDA
 - Jeffrey Murray, MD, MPH, US FDA
 - Michael Ninburg, MPA, Hepatitis Education Project
 - Sandra Palleja, MD, PPD
 - Daniela Paulson, AiCuris
 - Jean-Michel Pawlotsky, MD, PhD, Henri Mondor University Hospital
 - Ross Leland Pierce, MD, US FDA
 - Sybil Tasker, MD, MPH, Altimmune
 - Andrew Vaillant, PhD, Replicor
 - Hwai-I Yang, PhD, Academia Sinica

- **Surrogate Endpoints WG Members**
 - Ibronke Addy, MBBS, MSc, AiCuris
 - Nat Brown, MD, Hepatitis B Foundation
 - Henry Chan, MD, The Chinese University of Hong Kong

- **HBV Forum Sponsors**
 - Abbott Molecular
 - Altimmune
 - Arbutus Biopharma
 - Arrowhead Pharmaceuticals
 - Assembly Biosciences
 - AstraZeneca
 - ContraVir
 - DDL Diagnostics
 - Gilead Sciences
 - GlaxoSmithKline, Hepatitis B Foundation
 - Janssen
 - MEDIAN Technologies
 - Novartis
 - PPD
 - Quest Diagnostics
 - Roche Molecular Systems
 - Springbank Pharma