Observations from Interval and Clinical Cohorts

Carlie Williams, PhD, MPH
Chief, Epidemiology Branch, Basic Science Program, Division of AIDS, NIAID, NIH
Perspective from Cohorts

- Cohorts are eager to contribute
- Have considerable data to contribute
- Must be taken in their context
Interval Cohorts – Research Cohorts

- **Sparse**
 - Several in Europe and North America
 - But also several in low-income settings
 - Post hoc analysis of trial databases

- **Characterized by “beyond clinical care ascertainment”**
 - Not tied to clinical events – self report, medical record confirmation
 - Include those not in care, non-symptomatic data collection AND those not infected
Semi-Annual Visit

- **Interview Administered Questionnaires:**
 - Behavior
 - Health Services
 - Medical and OB/GYN
 - Demographics/Psychosocial

- **Physical and Gynecological Examination**

- **Lipodystrophy Exam** (body measures, BIA)

- **Medication use** (ART, OI prophylaxis, hepatitis, etc.)

- **Participant Samples:**
 - Blood (virologic, immunologic, fasting lipodystrophy markers, liver/renal function, etc.)
 - Other (CVL, saliva)
 - Local and National Repositories
Continuous Outcome Ascertainment

- Seroconversion
- Clinical Outcomes:
 - AIDS Diagnoses
 - Malignancies
 - Mortality
 - Tuberculosis
 - Cardiovascular Diagnoses
 - Liver biopsies
 - Hysterectomies

- Sources:
 - Self-report
 - Medical Record Abstraction
 - Registry Match (Cancer, TB)
 - National Death Index
Accident- and Injury-related Causes of Death in MACS and WIHS

<table>
<thead>
<tr>
<th>Cause of Death</th>
<th>MACS</th>
<th>WIHS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIV+</td>
<td>HIV-</td>
</tr>
<tr>
<td>Suicide</td>
<td>5 (21)</td>
<td>5 (19)</td>
</tr>
<tr>
<td>Poisoning / Drug OD</td>
<td>7 (29)</td>
<td>6 (22)</td>
</tr>
<tr>
<td>Drowning</td>
<td>1 (4)</td>
<td>2 (7)</td>
</tr>
<tr>
<td>Assault / homicide</td>
<td>3 (13)</td>
<td>6 (22)</td>
</tr>
<tr>
<td>Suffocation</td>
<td>1 (4)</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Other injury accidents</td>
<td>7 (29)</td>
<td>7 (26)</td>
</tr>
<tr>
<td>Total accident / injury</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>All other causes</td>
<td>1721</td>
<td>58</td>
</tr>
</tbody>
</table>

NOTE: Data are number (%) of participants.
Standardized Incidence Ratios for Cancer in the HAART and Pre-HAART Eras among 1559 HIV+ Women
(Hessol, Seaberg, . . . , Levine, JAIDS 2004; 36:978-985)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Person-years:</td>
<td></td>
<td></td>
<td>Person-years:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,492</td>
<td></td>
<td></td>
<td>5,417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIDS Cancers</td>
<td>Observed</td>
<td>SIR</td>
<td>95% CI*</td>
<td>Observed</td>
<td>SIR</td>
<td>95% CI*</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>23.4</td>
<td>12.5 – 37.7</td>
<td>6</td>
<td>4.4</td>
<td>1.6 – 8.6</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>53.4</td>
<td>24.4 – 93.6</td>
<td>3</td>
<td>6.4</td>
<td>1.3 – 15.5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>316.1</td>
<td>86.1 – 692.7</td>
<td>2</td>
<td>189.3</td>
<td>22.9 – 527.3</td>
</tr>
<tr>
<td>NHL</td>
<td>7</td>
<td>1.4</td>
<td>0.6 – 2.6</td>
<td>15</td>
<td>1.0</td>
<td>0.6 – 1.5</td>
</tr>
<tr>
<td>KS</td>
<td>2</td>
<td>6.8</td>
<td>0.8 – 18.9</td>
<td>6</td>
<td>6.2</td>
<td>2.3 – 12.1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.4</td>
<td>0.01 – 1.6</td>
<td>4</td>
<td>0.5</td>
<td>0.1 – 1.2</td>
</tr>
</tbody>
</table>

* The 95% confidence intervals (CI) are based on exact statistical methods.
Prevalence of Clinical Symptoms Associated with HAART

(Silverberg, Gore, . . . , Gange, Clin Infect Dis 2004; 39:717-724)

OR* for any symptom: 1
95% CI: (reference) 0.9
0.7, 1.1
1.4
1.1, 1.8

* Adjusted for age, race, BMI, baseline HIV risk, alcohol, CD4+, HIV RNA, AIDS
Incident Lipoatrophy and Lipohypertrophy

*(Tien, Cole, . . . , Grunfeld, *JAIDS* 2003; 34:461- 466)*

- **Peripheral Lipoatrophy**
 - RH = 2.9
 - 95% CI, 1.4 – 3.2

- **Peripheral Lipohypertrophy**
 - RH = 1.0
 - 95% CI, 0.7 – 1.3

- **Central Lipoatrophy**
 - RH = 0.8
 - 95% CI, 0.6 – 1.1

- **Central Lipohypertrophy**
 - RH = 1.8
 - 95% CI, 1.2 – 2.8
Clinical Cohorts

- Data are being collected everywhere!
 - Good charts are good care
 - Quality is directly proportional to relevance to the collector

- Centered around care events
 - The data is the most dense when something happens
 - Sparse data before an event occurs
 - Standard of care, do not ascertain asymptomatic disease, disease in uninfected
Strong “global portfolio” of Clinical Cohorts

- European cohort collaborations – extensive and mature research programs
- CNICS data collection protocol of US Centers for AIDS Research
- Several low-income country databases are collecting data
Formal gathering of data
- Iterative improvements – feedback loops
- Interaction with data collectors improve relevance of data collected
- Specific studies improve definitions of conditions
- Extremely large datasets

Coalition of the willing
- Primary to REFERRAL
- Not representative of all clinics in a region

Predominately standard of care
- Based on patient encounters
- Some pre-ARV data at some sites
- No data on HIV-s outside of NA-ACCORD
Capacity to Diagnose AE

- Regional database query
- Site level data query
- Meta-data on site level characteristics
 - Numbers of patients
 - Contents of database, pre and post ARVs
- AE ascertainment
 - Health practitioner level
 - Laboratory capacity
 - Visit schedules, testing schedules
Regional Responses

- NA-ACCORD 50,000 patients
- West Africa 16,945 adults, 2,204 pediatric
- Central Africa 872 adults
- Australia/Asia 2,947 adults
- Caribbean, Central America S. America ~ 50,000
- East Africa ~150,000
- Southern Africa ~ 100,000
Regional Responses

- **Australia/Asia** – more intensive data collection system
 - 2,645 patients in database with CD4
 - 1,930 with viral load
 - 2,272 SGPT, 1,552 SGOT for liver function
 - 1,790 Creatinine
 - ~1,679 Lipid measurements including triglycerides
 - 152 lactic acid

<table>
<thead>
<tr>
<th>CD8</th>
<th>Glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total lymphocyte</td>
<td>Amylase</td>
</tr>
<tr>
<td>Weight</td>
<td>Lipase</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>Alkaline</td>
</tr>
<tr>
<td>Haemoglobin</td>
<td>Bilirubin</td>
</tr>
</tbody>
</table>
West Africa – 16,945

- 11,114 patients in database with CD4
 - 1,749 with viral load
 - 9,444 with liver function
 - 10,472 with Hemoglobin
 - 5,390 with neutrophil count

- 1,663 pediatric patients with CD4
 - 376 viral loads
 - 338 liver function
 - 305 Creatinine
 - 611 lymphocyte count
 - 1,651 Hemoglobin
 - 77 Uremia
Central Africa 872 prospectively collected

- 872 patients in database with CD4
 - 0 viral load
 - 872 CBC
 - 872 liver function
 - 872 Creatinine
 - 0 lactic acid
 - 872 glycemia
Regional Responses

- Central Africa – diagnoses in database
 - Laboratory based
 - 1,120 anemia
 - 1,950 neutropenia
 - 2,286 lymphopenia
 - 2,307 thrombocytopenia
 - Patient report
 - 64 nausea, 99 diarrhea, 23 vomiting
 - 144 fatigue
 - 315 nightmares, 86 abnormal dreams
 - Clinical exam
 - 262 peripheral neuropathy
 - 14 KS, 1 cervical cancer
Summary

- **Interval Cohorts**
 - Beyond standard of care
 - Comparison to negatives, asymptomatics

- **Clinical cohorts**
 - Can only see at the “standard of care”
 - Will improve as expectations of monitoring change