Liver fibrosis in NASH: A Roadmap for Drug Discovery and Pharmacotherapy

Detlef Schuppan

Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center Mainz, Germany

Division of Gastroenterology, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, USA

Liver Forum, EASL, Amsterdam, April 18, 2017
I have no conflict of interest to declare
Relevance of advanced liver fibrosis/cirrhosis as endpoint

- Noncirrhotic fibrosis
- Cirrhosis
- Fibrosis progression
- Induction of reversal
- Decompensation
- HCC
- Liver related death
Fibrogenesis is a Multicellular Process

Normal Liver
- Quiescent stellate cell
- Portal or perivascular fibroblast

Activated Myofibroblast
- Activated myofibroblast (HSC

Macrophage
- Macrophage
- TLR4
- Toxins
 - Toxic bile salts
 - (Auto-) Immunity
 - HBV, HCV
- Ox. stress, ROS
- Insulin resistance
- Microbiome, nutrients

Endothelium
- Endothelium

Cytokines
- Cytokines

Chemokines
- Chemokines

ROS
- ROS

Genetic Predisposition
- Progenitor cell, cholangiocyte, hepatocyte

Repetitive Damage (second hit)
- Toxins
- Ox. stress, ROS
- Insulin resistance
- Microbiome, nutrients

Cirrhosis and HCC
- Common pathways & immune environment

Collagen Synthesis
- MMP-1/3/13
- TIMP-1
- TIMP-2

Cirrhosis
- Organ failure
- Matrix accumulation

Schuppan and Afdhal, Lancet 2008
Schuppan and Kim, JCI 2013
Reversibility of advanced fibrosis after removal/suppression of the primary causal hit
Cirrhosis Regression with Longterm Tenofovir Treatment

1-5 yr extension of 48 week tenofovir trial (Marcellin P et al, NEJM 2008)
489/615 pts (76%) included 5 yr biopsy: 348/489 (71%)

Baseline: no cirrhosis
Better 105/252
Worse 12/252

Baseline: cirrhosis
Better 71/96
(≥2 stages: 70/71)

Marcellin P et al, Lancet 2013
Antifibrotic approaches
complex interactions between cells and cytokines, chemokines, extracellular matrix
- anti- or profibrotic effects are context-dependent
- unambiguous targets are rare

Schuppan and Kim, J Clin Invest 2013
Mehal and Schuppan, Sem Liver Dis 2015
Role of activated cholangiocytes in fibrosis progression
Progenitors ("activated cholangiocytes") as driving force of fibrogenesis

Proliferation stimulus

2nd hit

E.g. oxidative stress in NAFL

Hepatocyte growth arrest / lipoapoptosis

Rise of fibrogenic progenitor cells

Ductular reaction

EMT-like changes

Activated myofibroblasts

Activated progenitor cells/ cholangiocytes

Integrin $\alpha\beta_6$ $\uparrow\uparrow$

$\alpha\beta_6$ inhibitors

General mechanism in fibrosis $\geq F2$

FCH: Davies SE et al, Hepatology 1991
ALH: Ray MB et al, Liver 1993
Various CLD: Lowes KN, Am J Pathol 1999
HCV: Clouston A et al, Hepatology 2005
NASH: Richardson MM et al, Gastroenterology 2007

Wang et al, Hepatology 2007; Popov Y et al, J Hepatology 2008; Patsenker E et al, Gastroenterology 2008

Nanotechnology, activated myofibroblasts

EMT-like changes

Activated myofibroblasts

Cirrhosis/HCC
Pharmacological repolarization of macrophages

- IL-12, IFNγ
 - classically activated M1 macrophage

- IL-4, IL-13, Stat-6
 - alternatively activated M2 macrophage

Monocyte

Phagocytosis of debris and apoptotic cells
Generation of pro-inflammatory cytokines

“Resolution of fibrosis”
Immune-activating & cancer-suppressive

Pro-resolution macrophage
CD11b+ F4/80+ Ly6Clow

Targeted modulation

Promotion of angiogenesis
Generation of anti-inflammatory cytokines

“Promotion of fibrosis”
Immune-suppressive & cancer promoting

Macrophages of „wounds that do not heal“ = fibrosis- and tumor-associated macrophages

References:
- Duffield JS et al, JCI 2005
- Fallowfield JA, J Immunol 2007
- Duffield JS et al, JCI 2007
- Popov Y et al, Am J Physiol 2010
- Ramachandran S et al, PNAS 2012
- Schuppan and Kim, JCI 2013
- Mehal and Schuppan, Sem Liver Dis 2015
Mechanism based antifibrotic therapies in clinical development
Drugs in phase I-II clinical trials to address fibrosis (1)

ECM, EMT, Progenitor activation (inflammation, hepatocyte apoptosis)

- Gilead: GS6624 (Simtuzumab): α-Loxl2 Mab (>700 patients with ≥ stage 2 NASH or PSC)
- Gilead: GS9654 (Selonisertib): Ask1 (apoptosis signaling kinase 1) inhibitor (70 patients with ≥ stage 2 NASH)
- Biogen-Stromedix: STX-100: α-Integrin αVβ6 Mab
- Biogen-Idec: anti-Tweak
- Sanofi-Genzyme: Fresolimumab: α-TGFβ Mab
- Pfizer-Fibrogen: FG3019: α-CTGF Mab
- Novartis: Seculizumab, α-IL-17 Mab
- Conatus: Emricasan: Caspase inhibitor (>250 pts with NASH)
- Boehringer-Ingelheim: VAP-1 antagonist (>200 pts with NASH)

Drugs in phase I-II clinical trials to address fibrosis (2)
(M2) Macrophages, hepatic stellate cells

- Janssen: Carlumab: \(\alpha\)-MCP-1/CCL2 Mab
- Pfizer: Selzentry: CCR5 antagonist
- Tobira/Allergan: Cenicriviroc: CCR2/CCR5 antagonist (289 patients with NASH)
- BMS: Peg-FGF21
- Novartis: QUAX576: \(\alpha\)-IL-13 Mab
- Sanofi: SAR156597: \(\alpha\)-IL-4/IL-13 Mab
- Isis and own group: IL4R\(\alpha\)1, IL13R\(\alpha\)1……. antisense-DNA
- Promedior: RM-151: rec. Pentraxin-2 (SAP)
- Novo Nordisc: GLP-1 agonist/Semaglutide) (300 pts with NASH)
An anti-inflammatory agents are not necessarily antifibrotic, examples:

• anti-TGFβ1: blocks fibrosis, enhances inflammation

• anti-CCR2, CCR5… : blocks inflammatory and restorative macrophage infiltration/activation, HSC activation
Current and evolving options for fibrosis assessment

Liver Biopsy – crude assessment, not dynamic

Fibrosis serum markers → validated markers of fibrogenesis and fibrolysis

Imaging → targeted and quantitative imaging of fibrogenesis

Elastography – crude assessment, not dynamic
Sampling variability in staging & grading

HCV, laparoscopic biopsy of right and left liver, n=124, Metavir-score

<table>
<thead>
<tr>
<th>Difference</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1 stage</td>
<td>41/124</td>
<td>33.1</td>
</tr>
<tr>
<td>≥ 2 stages</td>
<td>3/124</td>
<td>2.4</td>
</tr>
<tr>
<td>≥ 1 grade</td>
<td>30/124</td>
<td>24.2</td>
</tr>
<tr>
<td>≥ 2 grade</td>
<td>2/124</td>
<td>1.6</td>
</tr>
<tr>
<td>cirrhosis vs. stage 3</td>
<td>18/124</td>
<td>14.5</td>
</tr>
</tbody>
</table>

Regev et al., Am. J. Gastroenterol. 97, 2614, 2002

≥ 1 stage discordance

NASH > 40%
PBC/PSC > 60%

Ratziu V, Gastroenterology 2005; Merriman RB et al, Hepatology 2006

Liver biopsy samples only 1/50,000 of the whole liver
Comparison of 6 biomarker scores in 180 pts with CHC (F0-1 vs. F2-4)

- **MP3**: PIIINP, MMP-1
- **APRI**: AST / platelets
- **Forns**: γGT, cholesterol, platelets, age
- **Fibrotest**: age, Bili, γGT, γ-globulin, haptoglobin, α2M
- **Hepascore**: age, gender, α2M, HA, Bili
- **Fibrometer**: age, INR, platelets, AST, urea, α2M, HA

All with AUROCs 0.80-0.85 = only modest tests to distinguish no/mild vs. significant fibrosis

Leroy V et al, J Hepatol 2007
Biological plausibility:

Direct markers of fibrosis dynamics

precursor synthesis → *propeptide-cleavage*

Best current marker of fibrogenesis: *ProC3*

Marker(s) of fibrolysis needed

- *P3NP*, *ProN5*, *TIMP-1*, *hyaluronic acid*
- *fibrogenesis*
- *matrix degradation/turnover*: *C3M*, *C4M*, *C5M*, *C6M*, *lumican*, *laminins*, *tenascin*

But: degradation fragments also derive from freshly synthesized matrix proteins

ELF-Panel

NB biomarkers - established assays – validation for liver:
C5M (MMP-mediated type V collagen degradation)
C6M (MMP-mediated type VI collagen degradation)
ProC3 (type III collagen formation) - fibrogenesis
ProN4 (type IV collagen formation)
ProC5 (type V collagen formation)
ProC6 (type VI collagen formation, adipokine) – fibrogenesis, adipose tissue fibrosis (NASH)

UMCM biomarkers of progression or reversal derived from serum iTRAQ and Somascan proteomics:
WDR85, WDR90, Ephrin B3, A9*, IB3*, PR8*, MK3* - fibrogenesis
IB3*, PR8*, MK3*, A2*, A14*, CS17*, CS26*, TP2* - fibrolysis

* in validation, listed for patent protection

Nielsen M et al, Liver Int 2015
Leeming D et al, submitted
Surabattula R et al, submitted
Procollagen type III processing

each variant of the same protein carries unique information
Nonresponders to HCV-antiviral therapy
Ishak fibrosis score 2-4
Treatment duration: 52 weeks with follow up biopsies (209/265=79%)
Placebo controls n=89
Farglitazar 0.5 mg/d: n=88
Farglitazar 1.0 mg/d: n=88
Histological quantification:
\(\alpha \)-SMA, collagen (SR morphometry)

Non-TZDD PPAR-\(\gamma \) agonist with 100-1000fold higher activity than Pio-/Tro-/Rosi-glitazone

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Collagen</th>
<th>(\alpha)-SMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo controls</td>
<td>+49%</td>
<td>27%</td>
</tr>
<tr>
<td>Farglitazar 0.5 mg/d</td>
<td>+58%</td>
<td>27%</td>
</tr>
<tr>
<td>Farglitazar 1.0 mg/d</td>
<td>+52%</td>
<td>31%</td>
</tr>
</tbody>
</table>

no overall effect on fibrosis!
Pro-C3 identifies subjects who responded to antifibrotic therapy

Follow up on Pro-C3 levels

- > 20.2 ng/ml: selection criterion for responders
- a decline in serum levels indicates antifibrotic effect

Markers of fibrogenesis and fibrolysis: A2, A9 and A14: cell membrane molecules involved in ECM remodeling

Fibrolysis

Fibrogenesis

NS, healthy ctr

LTX: post transplant with progression to cirrhosis within 5 yr

BAV: before antiviral Tx for HCV

AAV: 24 w after highly effective antiviral Tx for HCV

Surabattula R et al, unpublished
Summary (1)

- (early) **Cirrhosis is reversible** when the major fibrogenic (inflammatory) trigger is eliminated (HepB, HepC, ai-Hep)
- This may even be possible for (decompensated) cirrhosis
- Most NASH drugs target the **hepatocyte** and its metabolic derangement, possibly with secondary antifibrotic effects
- Some drugs target **inflammation**, but this does not necessarily correlate with antifibrotic activity
- Other drugs address **multiple cells** and net effects are difficult to predict
• Major antifibrotic targets are related to fibrogenic cholangiocytes, macrophages and hepatic stellate cells

• Several (pharmacological) therapies that may inhibit progression and speed up reversal have entered the clinic

• Biologically plausible markers of fibrosis, fibrogenesis and fibrolysis to stratify patients and noninvasively monitor treatment response are being developed

• This should permit short and slim POC studies, testing of combinations and a personalized antifibrotic therapy